VSMask: Defending Against Voice Synthesis Attack via Real-Time Predictive Perturbation

Yuanda Wang, Hanqing Guo, Guangjing Wang, Bocheng Chen, Qiben Yan

SEIT Lab

Michigan State University

Voice Synthesis

Alexa will soon be able to read stories as your dead grandma

Brian Heater @bheater / 1:14 PM EDT • June 22, 2022

Comment

Voice Synthesis Methods

Deepfake Voice Threats

'Mom, these bad men have me': She believes scammers cloned her daughter's voice in a fake kidnapping

Scammers use AI to clone voice, terrify family with fa call: 'Worst day of m

An Arizona mom said the AI voice-cloning of her daughter was 'awful and v

Fraudsters Used AI to Mimic CEO's Voice in Unusual Cybercrime Case

Scams using artificial intelligence are a new challenge for companies

https://www.cnn.com/2023/04/29/us/ai-scam-calls-kidnapping-cec/index.html https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402 https://www.foxnews.com/media/scammers-ai-clone-womans-voice-terrify-family-fake-ransom-call-worst-day-life

ASSET

Threat Model

The adversary can hack your voice everywhere!

The synthetic voice can spoof both AI and human ears!

Defense against Voice Synthesis

Defense against Voice Synthesis -Cont.

Challenges

- Existing defense cannot provide real-time protection.
- It is time-consuming to generate protected speech by gradient descent.
- There is perceptible noise in the protected audio.

How to protect our voice in real-time without compromising audio quality ?

Predictive Model

• We can forecast the perturbation for upcoming live speech.

ANT

Predictive Model -Cont.

Universal Perturbation Header

ASSET

Perceptibility Mitigation

$$\begin{split} \boldsymbol{\delta} &= [\delta_{low} \quad \delta_{mid} \quad \delta_{high}]^T, \\ \text{subject to} \quad \| \ \delta_{low} \|_\infty < \varepsilon_1, \ \| \ \delta_{mid} \ \|_\infty < \varepsilon_2, \ \| \ \delta_{high} \|_\infty < \varepsilon_3 \end{split}$$

VSMask Application Scenarios

Evaluation Setup

Target Models

- AdaIN-VC (2019)
- AutoVC (2020)
- SV2TTS (2018)

Datasets

- VCTK Corpus (Voice Conversion)
- LibriSpeech (Text-to-speech)

Baseline Methods

- Random Noise
- Periodical Perturbation
- Online PGD
- Offline PGD

Parameters

ASSET

- t = 1.25s (Input length)
- $\Delta t = \gamma = 0.4$ s (Delay and output)
- $\varepsilon_{low}=0.115$, $\varepsilon_{high}=0.10$, $\varepsilon_{mid}=0.085$

Evaluation on ASV

• We use SpeechBrain for speaker verification. (Threshold = 0.25)

Method	Male-to-Male		Female-to-Female		Male-to-Female		Female-to-Male	
	Score	ASR	Score	ASR	Score	ASR	Score	ASR
Raw speech	0.595	91.9%	0.612	93.2%	0.561	88.3%	0.546	86.0%
Random noise	0.516	86.6%	0.538	89.0%	0.505	84.0%	0.473	81.5%
Periodical Perturbation	0.192	11.0%	0.203	12.5%	0.177	9.8%	0.156	8.6%
Offline PGD	0.064	0.0%	0.085	0.0%	0.049	0.0%	0.055	0.0%
VSMask	0.077	0.0%	0.104	0.0%	0.056	0.0%	0.073	0.0%

We apply VSMask to defend against AdaIN-VC voice synthesis model. It outperforms all real-time defenses and achieves similar performance as offline PGD method.

ANT -

Evaluation on Different Models

VSMask successfully defenses 3 different voice synthesis models. None of the synthetic speech samples can bypass the speaker verification.

A

Human Study

The perturbation is almost imperceptible for human ears!

The synthetic speech from protected samples can NEVER fool human ears!

ANT -

Cross-model & Adaptive Attack Evaluation

Source Target	AdaIN-VC	AutoVC	SV2TTS	
AdaIN-VC		15.0%	10.5%	
AutoVC	12.8%		0.0%	
SV2TTS	7.3%	15.2		

Adaptive methods		Denoiser	WaveGuard				
	None		Down-up (f=24k)	Quan- Dequan	Mel. (Bin=128)	LPC (Ord.=10)	
Score	0.096	0.090	0.078	0.082	0.080	0.073	

- Different input dimensions.
- Different training data.
- Different sampling rates.

- The perturbation is mel-spectrogram.
- Low audio quality degrades the performance.

Real-world Demonstration

VSMask can also protect our voice in physical world scenarios.

VSMask: Defending Against Voice Synthesis Attack via Real-Time Predictive Perturbation

- Discussion
- **Q**Real-time feasibility
- **Adversarial training**

- Limitations
- **Powerful attackers**
- **Black-box defense**
- **Physical-world protection**

- We propose VSMask, a real-time defense mechanism against voice synthesis attacks based on predictive model.
- We optimize a universal perturbation header to indiscriminately protect speech with different lengths and sizes.
- We evaluate VSMask on three different voice synthesis models. The experimental results show that VSMask can provide realtime defense on both digital and physical spaces.

VSMask: Defending Against Voice Synthesis Attack via Real-Time Predictive Perturbation